Regular Article – Nuclear Structure and Reactions

The ¹⁹⁸Au β^- -half-life in the metal Au^{*}

T. Spillane^{1,2}, F. Raiola², F. Zeng³, H.W. Becker⁴, L. Gialanella⁵, K.U. Kettner⁶, R. Kunze², C. Rolfs^{2,a}, M. Romano⁵, D. Schürmann², and F. Strieder²

- ¹ University of Connecticut, Storrs, CT, USA
- ² Experimentalphysik III, Ruhr-Universität Bochum, Bochum, Germany
- ³ Chinese Institute of Atomic Energy, Beijing, China
- ⁴ Dynamitron-Tandem-Laboratorium, Ruhr-Universität Bochum, Bochum, Germany
- ⁵ Dipartimento di Scienze Fisiche, Università Federico II and INFN, Napoli, Italy
- ⁶ Fachhochschule Bielefeld, Bielefeld, Germany

Received: 12 November 2006 / Revised: 23 January 2007 Published online: 8 February 2007 – © Società Italiana di Fisica / Springer-Verlag 2007 Communicated by D. Schwalm

Abstract. For the β^- -decay of ¹⁹⁸Au in a Au metallic environment the half-life was observed to be longer by 0.4±0.7% at room temperature (T = 293 K) and by 4.0±0.7% when the metal was cooled to T = 12 K, both compared to the literature value of $T_{1/2} = 2.6943 \pm 0.0008 \text{ d}$.

PACS. 26.20.+f Hydrostatic stellar nucleosynthesis – 27.30.+t $20 \le A \le 38 - 21.10$.Tg Lifetimes

Recently, changes in the half-life for the electron capture of ⁷Be $(0.8 \pm 0.2\%$ longer half-life [1]) and for the β^+ decay of 22 Na $(1.2 \pm 0.2\%$ shorter half-life [2]) have been reported, where these nuclides were implanted in the metals Pd and In and cooled to T = 12 K. For the β^+ -decay of ²²Na in the metal Al at T = 90 K a shorter half-life of $0.7 \pm 0.5\%$ has been found [3]. Earlier reports on a reduced radioactivity for the β^{-} -decay of ³H in the metal Ti [4] (implying an up to 40% longer half-life) and an increased radioactivity for the α -decay of ²¹⁰Po in the metal Pd [5] (implying a up to 300% shorter half-life) have been published. From a recent theoretical paper [6] one predicts for α -decays no change in half-life. Furthermore, on the basis of low-temperature nuclear orientation data, an absence of appreciable half-life changes in α -emitters and in other radioactive decays has been suggested [7]: the radioactive nuclides have been implanted here at 60 keV (ISOLDE laboratory) and were located thus very close to the surface; the surface may have an oxygen and/or hydrogen content thus representing to a large extent an insulator, for which no appreciable effect on half-lives is indeed expected; it is also not clear under what vacuum conditions the radioactive samples have been cooled.

We report here on the β^- -decay of ¹⁹⁸Au (Q = 1370 keV, $T_{1/2} = 2.6943 \pm 0.0008 \text{ d}$ [8], emission of a 412 keV γ -ray). If this decay occurs in a metal cooled to

Table 1. Results of ¹⁹⁸ Au half-lives	
Sample	$T_{1/2}(d)$
	$T=293{\rm K}$
1	2.698 ± 0.022
2	2.669 ± 0.017
3	2.730 ± 0.013
*	2.706 ± 0.019
	$T = 12 \mathrm{K}$
4	2.817 ± 0.023
5	2.755 ± 0.035
6	2.830 ± 0.050
*	2.802 ± 0.020
* Weighted avera	ge.

 $T = 12 \,\mathrm{K}$, one arrives for the Debye potential [1,2] at $U_{\mathrm{D}} = Z_{\mathrm{e}} Z_{\mathrm{t}} U_{\mathrm{e}} (\mathrm{d} + \mathrm{d}) (293/12)^{1/2} \approx 110 \,\mathrm{keV}$, where we used a typical value of 300 eV for the d + d fusion reaction at $T = 293 \,\mathrm{K}$ and assumed the $U_{\mathrm{D}} \propto T^{-1/2}$ dependence to be valid for $T < 293 \,\mathrm{K}$. Since the decay rate scales approximately with the fifth power of energy, one obtains a decay enhancement of $f_{\mathrm{lab}} \approx ((Q - U_{\mathrm{D}})/Q)^5 = 0.66, i.e.$ a longer half-life by 34%. At room temperature the half-life is longer by 8%. Using the actual phase space factors in the decay rates, one arrives at respective values of 32% and 7%. The present work reports on experimental investigations of these expected lifetime changes of ¹⁹⁸Au in the metal Au.

^{*} Supported by Dynamitron-Tandem-Laboratorium and GSI (BO/ROL).

^a e-mail: rolfs@ep3.rub.de

Fig. 1. Spectra near the 412 keV γ -ray of the ¹⁹⁸Au decay with and without the activated Au sample in place, obtained both over a running time of 1 h.

Fig. 2. Decay curve, $A(0) \exp(-t \ln 2/T_{1/2})$, of the 412 keV γ -ray from the ¹⁹⁸Au decay in the metal Au at T = 293 K; the errors shown are of statistical origin only. The fitted solid curve leads to $A(0) = 3.68 \pm 0.04$ cps and $T_{1/2} = 2.669 \pm 0.017$ d, while the dashed curve represents the expected curve for the $T_{1/2}$ literature value [6] assuming the same A(0) value.

The setup [1,2] consisted of a cryopump (Leybold RGD210, minimum fixed temperature $T = 12 \,\mathrm{K}$), where on the head of its Cu rod (length = 24 cm) the sample was installed together with a Si diode (Lake Shore Cryotronics DT-670) for the temperature measurement. The chamber with the cryopump was evacuated by a turbopump, an ion-getter-pump, and another cryopump leading to a base pressure of $p = 1.2 \times 10^{-9}$ mbar. When this base pressure was reached, the cryopump with the sample was

Fig. 3. Decay curve, $A(0) \exp(-t \ln 2/T_{1/2})$, of the 412 keV γ -ray from the ¹⁹⁸Au decay in the metal Au at T = 12 K; the errors shown are of statistical origin only. The fitted solid curve leads to $A(0) = 3.50 \pm 0.05$ cps and $T_{1/2} = 2.817 \pm 0.023$ d, while the dashed curve represents the expected curve for the $T_{1/2}$ literature value [6] assuming the same A(0) value.

turned on, whereby the pressure improved only slightly: $p = 1.0 \times 10^{-9}$ mbar; in this way the sample was not polluted significantly by the rest gas in the setup. This setup represents a significant improvement compared to previous studies [1,2,7].

A Ge detector with 120% relative efficiency (at $E_{\gamma} = 1.3 \text{ MeV}$) was placed at 0° to the cryopump-axis at a 18 cm distance to the sample, to observe the 412 keV γ -rays from the radioactive decay of ¹⁹⁸Au (fig. 1). A linear fit of the background below and above the 412 keV peak was used

205

in the peak analysis. A 50 Hz pulser was used to measure the data acquisition dead time, which was below 0.1%.

Several Au foils (thickness = 0.5 mm, area = $2 \times 2 \text{ cm}^2$, with impurities of less than 1 ppm O and H; obtained from Chempur) were activated over 3 weeks via the reaction ¹⁹⁷Au(n, γ)¹⁹⁸Au in the neutron source at the Isotopenlabor of the Ruhr-Universität Bochum reaching a 412 keV γ -ray activity of about 3 kBq. In this procedure the whole 0.5 mm thick Au foil is activated and its total activation is observed via the 412 keV γ -rays, whereby the ratio of bulk to surface activation is maximized; this represents another significant improvement compared to previous studies [1, 2,7].

Due to the relatively short half-life of ¹⁹⁸Au, we measured its exponential decay curve, $A(0) \exp(-t \ln 2/T_{1/2})$, over a running period of several days in 1 hour steps for T = 293 K, where A(0) is the initial activity in units of counts per second (cps). The fit of the data (fig. 2) included A(0) and $T_{1/2}$ as free parameters leading to A(0) = 3.68 ± 0.04 cps, $T_{1/2} = 2.669 \pm 0.017$ d, and $\chi^2 = 1.06$. The weighted average of the results of 3 different activated samples led to a half-life of $T_{1/2} = 2.706 \pm 0.019$ d (table 1). The cryopump was then turned on (T = 12 K) and we measured the decay curve over a similar period of time (fig. 3): $A(0) = 3.50 \pm 0.05 \text{ cps}$, $T_{1/2} = 2.817 \pm 0.023 \text{ d}$, and $\chi^2 = 1.07$. The weighted average of 3 different activated samples led to a half-life of $T_{1/2} = 2.802 \pm 0.020 \text{ d}$ at T =12 K (table 1). Thus, the half-lives are longer by $0.4 \pm 0.7\%$ and $4.0 \pm 0.7\%$ at T = 293 and 12 K, respectively. The results are consistent qualitatively with the predictions of the Debye model, but the observed effects are significantly smaller (a factor of 8 at T = 12 K) than expected.

References

- 1. B. Wang et al., Eur. Phys. J. A 28, 375 (2006).
- 2. B. Limata et al., Eur. Phys. J. A 28, 251 (2006).
- 3. G. Ruprecht et al., POC(NIC-IX)171.
- 4. O. Reifenschweiler, Phys. Lett. A 184, 149 (1994).
- 5. A. Zastawny et al., Appl. Radiat. Isot. 43, 1147 (1992).
- 6. N.T. Zinner, preprint arXiv:nucl-th/0608049.
- 7. N.J. Stone et al., preprint arXiv:nucl-ex/0611041.
- 8. E.P. Mignonsin, Appl. Radiat. Isot. 45, 17 (1994).